
236

COMPUTER SCIENCE (868)
Aims (Conceptual)

(1) To understand algorithmic problem solving
using data abstractions, functional and
procedural abstractions, and object based and
object-oriented abstractions.

(2) To understand: (a) how computers represent,
store and process data at different levels of
abstraction that mediate between the machine
and the algorithmic problem solving level and
(b) how they communicate with the outside
world.

(3) To create awareness of ethical issues related to
computing and to promote safe, ethical behavior.

(4) To make students aware of future trends in
computing.

Aims (Skills)

To devise algorithmic solutions to problems and to
be able to code, validate, document, execute and
debug the solution using the Java programming
system.

CLASS XI
There will be two papers in the subject:

Paper I: Theory………….. 3 hours…70 marks

Paper II: Practical………. 3 hours…30 marks

PAPER I –THEORY – 70 MARKS

Paper I shall be of 3 hours duration and be divided
into two parts.

Part I (20 marks): This part will consist of
compulsory short answer questions, testing
knowledge, application and skills relating to the entire
syllabus.

Part II (50 marks): This part will be divided into
three Sections, A, B and C. Candidates will be
required to answer two questions out of three from
Section A (each carrying 10 marks) and two questions
out of three from Section B (each carrying 10 marks)
and two questions out of three from Section C (each
carrying 5 marks). Therefore, a total of six questions
are to be answered in Part II.

SECTION A

Basic Computer Hardware and Software

1. Numbers

Representation of numbers in different bases and
interconversion between them (e.g. binary, octal,
decimal, hexadecimal). Addition and subtraction
operations for numbers in different bases.

Introduce the positional system of representing
numbers and the concept of a base. Discuss the
conversion of representations between different

bases using English or pseudo code. These
algorithms are also good examples for defining
different functions in a class modelling numbers
(when programming is discussed). For addition
and subtraction (1’s complement and 2’s
complement) use the analogy with decimal
numbers, emphasize how carry works (this will be
useful later when binary adders are discussed).

2. Encodings

(a) Binary encodings for integers and real
numbers using a finite number of bits (sign-
magnitude, 2’s complement, mantissa-
exponent notation).

Signed, unsigned numbers, least and most
significant bits. Sign-magnitude
representation and its shortcomings (two
representations for 0, addition requires extra
step); two’s-complement representation.
Operations (arithmetic, logical, shift), discuss
the basic algorithms used for the arithmetic
operations. Floating point representation:
normalized scientific notation, mantissa-
exponent representation, binary point (discuss
trade-off between size of mantissa and
exponent). Single and double precision.

(b) Characters and their encodings (e.g. ASCII,
ISCII, Unicode).

Discuss the limitations of the ASCII code in
representing characters of other languages.
Discuss the Unicode representation for the
local language. Java uses Unicode, so strings
in the local language can be used (they can be

237

displayed if fonts are available) – a simple
table lookup for local language equivalents
for Latin (i.e. English) character strings may
be done. More details on Unicode are
available at www.unicode.org.

3. Propositional logic, Hardware implementation,
Arithmetic operations

(a) Propositional logic, well-formed formulae,
truth values and interpretation of well formed
formulae, truth tables.

Propositional variables; the common logical
connectives ((not)(negation), ∧
(and)(conjunction), ∨ (or)(disjunction),
⇒ (implication), ⇔ (equivalence)); definition
of a well-formed formula (wff); representation
of simple word problems as wff (this can be
used for motivation); the values true and
false; interpretation of a wff; truth tables;
satisfiable, unsatisfiable and valid formulae.

(b) Logic and hardware, basic gates (AND, NOT,
OR) and their universality, other gates
(NAND, NOR, XOR, XNOR), half adder, full
adder.

Show how the logic in (a) above can be
realized in hardware in the form of gates.
These gates can then be combined to
implement the basic operations for arithmetic.
Tie up with the arithmetic operations on
integers discussed earlier in 2 (a).

SECTION B

The programming element in the syllabus is aimed at
algorithmic problem solving and not merely rote
learning of Java syntax. The Java version used
should be 5.0 or later. For programming, the students
can use any text editor and the javac and java
programs or any other development environment: for
example, BlueJ, Eclipse, NetBeans etc. BlueJ is
strongly recommended for its simplicity, ease of use
and because it is very well suited for an ‘objects first’
approach.

4. Introduction to Object Oriented Programming
using Java

Note that topics 5 to 12 should be introduced
almost simultaneously along with Classes and
their definitions.

 5. Objects

(a) Objects as data (attributes) + behaviour
(methods or methods); object as an instance of
a class.

Difference between object and class should be
made very clear. BlueJ (www.bluej.org) and
Greenfoot (www.greenfoot.org) can be used
for this purpose.

(b) Analysis of some real-world programming
examples in terms of objects and classes.

Use simple examples like a calculator, date,
number etc. to illustrate how they can be
treated as objects that behave in certain well-
defined ways and how the interface provides a
way to access behaviour. Illustrate behaviour
changes by adding new methods, deleting old
methods or modifying existing methods.

(c) Basic concept of a virtual machine; Java
Virtual Machine (JVM); compilation and
execution of Java programs (the javac and
java programs).

The JVM is a machine but built as a program
and not through hardware. Therefore it is
called a virtual machine. To run, JVM
machine language programs require an
interpreter. The advantage is that such JVM
machine language programs (.class files) are
portable and can run on any machine that
has the java program.

(d) Compile time and run time errors; basic
concept of an exception, the Exception class,
try-catch, throw, throws and finally.

Differentiate between compile time and run
time errors. Run time errors crash the
program. Recovery is possible by the use of
exceptions. Explain how an exception object
is created and passed up until a matching
catch is found. This behaviour is different
from the one where a value is returned by a
deeply nested method call.

6. Primitive values, Wrapper classes, Types and
casting

Primitive values and types: byte, int, short, long,
float, double, boolean, char. Corresponding
wrapper classes for each primitive type. Class as
type of the object. Class as mechanism for user
defined types. Changing types through user defined

http://www.unicode.org/

238

casting and automatic type coercion for some
primitive types.

Ideally, everything should be a class; primitive
types are defined for efficiency reasons; each
primitive type has a corresponding wrapper class.
Classes as user defined types. In some cases types
are changed by automatic coercion or casting –
e.g. mixed type expressions. However, casting in
general is not a good idea and should be avoided,
if possible.

7. Variables, Expressions

Variables as names for values; named constants
(final), expressions (arithmetic and logical) and
their evaluation (operators, associativity,
precedence). Assignment operation; difference
between left-hand side and right-hand side of
assignment.

Variables denote values; variables are already
defined as attributes in classes; variables have
types that constrain the values it can denote.
Difference between variables denoting primitive
values and object values – variables denoting
objects are references to those objects. The
assignment operator = is special. The variable on
the LHS of = denotes the memory location while
the same variable on the RHS denotes the contents
of the location e.g. i=i+2.

NOTE: Library functions for solving expressions
may be used as and when required.

8. Statements, Scope

Statements; conditional (if, if else, if else if, switch
case) ternary operator, looping (for, while, do
while), continue, break; grouping statements in
blocks, scope and visibility of variables.

Describe the semantics of the conditional and
looping statements in detail. Evaluation of the
condition in conditional statements.

Nesting of blocks. Variables with block scope,
method scope, class scope. Visibility rules when
variables with the same name are defined in
different scopes.

9. Methods and Constructors

Methods and Constructors (as abstractions for
complex user defined operations on objects),
methods as mechanisms for side effects; formal
arguments and actual arguments in methods;

different behaviour of primitive and object
arguments. Static methods and variables. The this
operator. Examples of algorithmic problem
solving using methods (number problems, finding
roots of algebraic equations etc.).

Methods are like complex operations where the
object is implicitly the first argument. Operator
this denotes the current object. Methods typically
return values. Illustrate the difference between
primitive values and object values as arguments
(changes made inside methods persist after the
call for object values). Static definitions as class
variables and class methods visible and shared by
all instances. Need for static methods and
variables. Introduce the main method – needed to
begin execution. Constructor as a special kind of
method; the new operator; multiple constructors
with different argument structures; constructor
returns a reference to the object.

10. Arrays, Strings

Structured data types – arrays (single and multi-
dimensional), strings. Example algorithms that
use structured data types (searching, finding
maximum/minimum, sorting techniques, solving
systems of linear equations, substring,
concatenation, length, access to char in string,
etc.).

Storing many data elements of the same type
requires structured data types – like arrays.
Access in arrays is constant time and does not
depend on the number of elements. Sorting
techniques (bubble, selection, insertion),
Structured data types can be defined by classes –
String. Introduce the Java library String class and
the basic operations on strings (accessing
individual characters, various substring
operations, concatenation, replacement, index of
operations).

SECTION C

11. Basic input/output Data File Handling
(Binary and Text)

(a) Basic input/output using Scanner and Printer
classes.
Input/output exceptions. Tokens in an input
stream, concept of whitespace, extracting
tokens from an input stream (String Tokenizer
class). The Scanner class can be used for
input of various types of data (e.g. int, float,

239

char etc.) from the standard input stream.
Similarly, the Printer class handles output.
Only basic input and output using these
classes should be covered.

 Discuss the concept of a token (a delimited
continuous stream of characters that is
meaningful in the application program – e.g.
words in a sentence where the delimiter is the
blank character). This naturally leads to the
idea of delimiters and in particular
whitespace and user defined characters as
delimiters. As an example show how the
StringTokenizer class allows one to extract a
sequence of tokens from a string with user
defined delimiters.

(b) Data File Handling.

 Need for Data file, Input Stream, Output
Stream, Byte Stream (FileInputStream and
FileOutputStream), Character Stream
(FileReader, FileWriter), Operations-
Creation, Reading, Writing, Appending, and
Searching.

12. Recursion

 Concept of recursion, simple recursive methods
(e.g. factorial, GCD, binary search, conversion of
representations of numbers between different
bases).

 Many problems can be solved very elegantly by
observing that the solution can be composed of
solutions to ‘smaller’ versions of the same
problem with the base version having a known
simple solution. Recursion can be initially
motivated by using recursive equations to define
certain methods. These definitions are fairly
obvious and are easy to understand. The
definitions can be directly converted to a
program. Emphasize that any recursion must have
a base case. Otherwise, the computation can go
into an infinite loop.

13. Implementation of algorithms to solve
problems

The students are required to do lab assignments in
the computer lab concurrently with the lectures.
Programming assignments should be done such
that each major topic is covered in at least one
assignment. Assignment problems should be
designed so that they are sufficiently challenging
and make the student do algorithm design, address

correctness issues, implement and execute the
algorithm in Java and debug where necessary.

Self-explanatory.

14. Packages

Definition, creation of packages, importing user
defined packages, interaction of objects across
packages.

 Java Application Programming Interface (API),
development of applications using user defined
packages.

15. Trends in computing and ethical issues

(a) Artificial Intelligence, Internet of Things,
Virtual Reality and Augmented Reality.
Brief understanding of the above and their
impact on Society.

(b) Cyber Security, privacy, netiquette, spam,
phishing.
Brief understanding of the above.

(c) Intellectual property, Software copyright and
patents and Free Software Foundation.

Intellectual property and corresponding laws
and rights, software as intellectual property.

Software copyright and patents and the
difference between the two; trademarks;
software licensing and piracy. free Software
Foundation and its position on software,
Open Source Software, various types of
licensing (e.g. GPL, BSD).
Social impact and ethical issues should be
discussed and debated in class. The important
thing is for students to realise that these are
complex issues and there are multiple points
of view on many of them and there is no single
‘correct’ or ‘right’ view.

PAPER II: PRACTICAL – 30 MARKS

This paper of three hours duration will be evaluated
internally by the school.

The paper shall consist of three programming
problems from which a candidate has to attempt any
one. The practical consists of the two parts:

(1) Planning Session

(2) Examination Session

240

The total time to be spent on the Planning session and
the Examination session is three hours.
A maximum of 90 minutes is permitted for the
Planning session and 90 minutes for the Examination
session. Candidates are to be permitted to proceed
to the Examination Session only after the 90
minutes of the Planning Session are over.

Planning Session

The candidates will be required to prepare an
algorithm and a hand-written Java program to solve
the problem.

Examination Session
The program handed in at the end of the Planning
session shall be returned to the candidates. The
candidates will be required to key-in and execute the
Java program on seen and unseen inputs individually
on the Computer and show execution to the examiner.
A printout of the program listing, including output
results should be attached to the answer script
containing the algorithm and handwritten program.
This should be returned to the examiner. The program
should be sufficiently documented so that the
algorithm, representation and development process is
clear from reading the program. Large differences
between the planned program and the printout will
result in loss of marks.

Teachers should maintain a record of all the
assignments done as part of the practical work
throughout the year and give it due credit at the time
of cumulative evaluation at the end of the year.
Students are expected to do a minimum of twenty
assignments for the year and ONE project based on
the syllabus.

List of Suggested Projects:
PRESENTATION / MODEL BASED/ APPLICATION

BASED

1. Creating an expert system for road-traffic
management (routing and re-routing of vehicles
depending on congestion).

2. Creating an expert system for medical diagnosis
on the basis of symptoms and prescribe a suitable
treatment.

3. Creating a security system for age-appropriate
access to social media.

4. Simulate Adders using Arduino Controllers and
Components.

5. Simulate a converter of Binary to Decimal
number systems using Arduino Controllers and
Components.

6. Develop a console-based application using Java
for Movie Ticket Reservation.

7. Develop a console-based application using Java to
encrypt and decrypt a message (using cipher text,
Unicode-exchange, etc).

8. Develop a console-based application using Java to
find name of the bank and branch location from
IFSC.

9. Develop a console-based application using Java to
calculate taxable income (only direct tax).

10. Develop a console-based application using Java to
develop a simple text editor (text typing, copy,
cut, paste, delete).

EVALUATION

Marks (out of a total of 30) should be distributed as
given below:

Continuous Evaluation

Candidates will be required to submit a work file
containing the practical work related to programming
assignments done during the year and ONE project.

Programming assignments done
throughout the year

10 marks

Project Work (based on any topic from the
syllabus)

5 marks

Terminal Evaluation

 (Marks should be given for choice of algorithm and
implementation strategy, documentation, correct output
on known inputs mentioned in the question paper,
correct output for unknown inputs available only to the
examiner).

Solution to programming problem on
the computer

15 Marks

241

CLASS XII
There will be two papers in the subject:

Paper I: Theory……….. 3 hours….70 marks

Paper II: Practical…….. 3 hours….30 marks

PAPER I –THEORY – 70 MARKS

Paper I shall be of 3 hours duration and be divided
into two parts.

Part I (20 marks): This part will consist of
compulsory short answer questions, testing
knowledge, application and skills relating to the entire
syllabus.

Part II (50 marks): This part will be divided into
three Sections, A, B and C. Candidates will be
required to answer two questions out of three from
Section A (each carrying 10 marks) and two questions
out of three from Section B (each carrying 10 marks)
and two questions out of three from Section C (each
carrying 5 marks). Therefore, a total of six questions
are to be answered in Part II.

SECTION A

1. Boolean Algebra

(a) Propositional logic, well formed formulae,
truth values and interpretation of well formed
formulae (wff), truth tables, satisfiable,
unsatisfiable and valid formulae. Equivalence
laws and their use in simplifying wffs.

Propositional variables; the common logical
connectives (~ (not)(negation), ∧
(and)(conjunction), ∨ (or)(disjunction), ⇒
(implication), ⇔ (biconditional); definition of
a well-formed formula (wff); `representation
of simple word problems as wff (this can be
used for motivation); the values true and
false; interpretation of a wff; truth tables;
satisfiable, unsatisfiable and valid formulae.

Equivalence laws: commutativity of ∧, ∨;
associativity of ∧, ∨; distributivity;

De Morgan’s laws; law of implication (p ⇒ q
≡ ~p ∨ q); law of biconditional ((p ⇔ q) ≡
(p ⇒ q) ∧ (q ⇒ p)); identity (p ≡ p); law of
negation (~ (~p) ≡ p); law of excluded middle
(p ∨~p ≡ true); law of contradiction (p∧~p ≡
false); tautology and contingency
simplification rules for ∧, ∨. Converse,
inverse and contra positive. Chain rule,
Modus ponens.

 (b) Binary valued quantities; basic postulates
of Boolean algebra; operations AND, OR and
NOT; truth tables.

(c) Basic theorems of Boolean algebra
(e.g. duality, idempotence, commutativity,
associativity, distributivity, operations with 0
and 1, complements, absorption, involution);
De Morgan’s theorem and its applications;
reducing Boolean expressions to sum of
products and product of sums forms;
Karnaugh maps (up to four variables).

Verify the laws of Boolean algebra using truth
tables. Inputs, outputs for circuits like half
and full adders, majority circuit etc., SOP and
POS representation; Maxterms & Minterms,
Canonical and Cardinal representation,
reduction using Karnaugh maps and Boolean
algebra.

2. Computer Hardware

(a) Elementary logic gates (NOT, AND, OR,
NAND, NOR, XOR, XNOR) and their use in
circuits.

(b) Applications of Boolean algebra and logic
gates to half adders, full adders, encoders,
decoders, multiplexers, NAND, NOR as
universal gates.

Show the correspondence between Boolean
methods and the corresponding switching circuits
or gates. Show that NAND and NOR gates are
universal by converting some circuits to purely
NAND or NOR gates.

242

SECTION B

The programming element in the syllabus (Sections B
and C) is aimed at algorithmic problem solving and
not merely rote learning of Java syntax. The Java
version used should be 5.0 or later. For programming,
the students can use any text editor and the javac and
java programs or any other development environment:
for example, BlueJ, Eclipse, NetBeans etc. BlueJ is
strongly recommended for its simplicity, ease of use
and because it is very well suited for an ‘objects first’
approach.

3. Implementation of algorithms to solve
problems

The students are required to do lab assignments in
the computer lab concurrently with the lectures.
Programming assignments should be done such
that each major topic is covered in at least one
assignment. Assignment problems should be
designed so that they are sufficiently challenging.
Students must do algorithm design, address
correctness issues, implement and execute the
algorithm in Java and debug where necessary.

 Self explanatory.

4. Programming in Java (Review of Class XI
Sections B and C)

Note that items 4 to 13 should be introduced
almost simultaneously along with classes and
their definitions.

While reviewing, ensure that new higher order
problems are solved using these constructs.

5. Objects

(a) Objects as data (attributes) + behaviour
(methods); object as an instance of a class.
Constructors.

(b) Analysis of some real-world programming
examples in terms of objects and classes.

(c) Basic input/output using Scanner and Printer
classes from JDK; input/output exceptions.
Tokens in an input stream, concept of

whitespace, extracting tokens from an input
stream (String Tokenizer class).

6. Primitive values, Wrapper classes, Types and
casting

Primitive values and types: byte, int, short, long,
float, double, boolean, char. Corresponding
wrapper classes for each primitive type. Class as
type of the object. Class as mechanism for user
defined types. Changing types through user
defined casting and automatic type coercion for
some primitive types.

7. Variables, Expressions

Variables as names for values; named constants
(final), expressions (arithmetic and logical) and
their evaluation (operators, associativity,
precedence). Assignment operation; difference
between left hand side and right hand side of
assignment.

8. Statements, Scope

Statements; conditional (if, if else, if else if,
switch case, ternary operator), looping (for, while,
do while, continue, break); grouping statements in
blocks, scope and visibility of variables.

9. Methods

Methods (as abstractions for complex user defined
operations on objects), formal arguments and
actual arguments in methods; different behaviour
of primitive and object arguments. Static method
and variables. The this Operator. Examples of
algorithmic problem solving using methods
(number problems, finding roots of algebraic
equations etc.).

10. Arrays, Strings

Structured data types – arrays (single and multi-
dimensional), address calculations, strings.
Example algorithms that use structured data types
(e.g. searching, finding maximum/minimum,
sorting techniques, solving systems of linear
equations, substring, concatenation, length, access
to char in string, etc.).

243

Storing many data elements of the same type
requires structured data types – like arrays.
Access in arrays is constant time and does not
depend on the number of elements. Address
calculation (row major and column major),
Sorting techniques (bubble, selection, insertion).
Structured data types can be defined by classes –
String. Introduce the Java library String class and
the basic operations on strings (accessing
individual characters, various substring
operations, concatenation, replacement, index of
operations). The class StringBuffer should be
introduced for those applications that involve
heavy manipulation of strings.

11. Recursion

 Concept of recursion, simple recursive methods
(e.g. factorial, GCD, binary search, conversion of
representations of numbers between different
bases).

Many problems can be solved very elegantly by
observing that the solution can be composed of
solutions to ‘smaller’ versions of the same
problem with the base version having a known
simple solution. Recursion can be initially
motivated by using recursive equations to define
certain methods. These definitions are fairly
obvious and are easy to understand. The
definitions can be directly converted to a
program. Emphasize that any recursion must have
a base case. Otherwise, the computation can go
into an infinite loop.

The tower of Hanoi is a very good example of how
recursion gives a very simple and elegant solution
where as non-recursive solutions are quite
complex.

SECTION C

Inheritance, Interface, Polymorphism, Data
structures, Computational complexity

12. Inheritance, Interfaces and Polymorphism

(a) Inheritance; super and derived classes;
member access in derived classes; redefinition
of variables and methods in subclasses;

abstract classes; class Object; protected
visibility. Subclass polymorphism and
dynamic binding.

Emphasize inheritance as a mechanism to
reuse a class by extending it. Inheritance
should not normally be used just to reuse
some methods defined in a class but only
when there is a genuine specialization (or
subclass) relationship between objects of the
super class and that of the derived class.

(b) Interfaces in Java; implementing interfaces
through a class; interfaces for user defined
implementation of behaviour.

 Motivation for interface: often when creating
reusable classes some parts of the exact
implementation can only be provided by the
final end user. For example, in a class that
sorts records of different types the exact
comparison operation can only be provided
by the end user. Since only he/she knows
which field(s) will be used for doing the
comparison and whether sorting should be in
ascending or descending order be given by
the user of the class.

 Emphasize the difference between the Java
language construct interface and the word
interface often used to describe the set of
method prototypes of a class.

13. Data structures

(a) Basic data structures (stack, queue, circular
queue, dequeue); implementation directly
through classes; definition through an
interface and multiple implementations by
implementing the interface. Conversion of
Infix to Prefix and Postfix notations.

 Basic algorithms and programs using the
above data structures.

 Data structures should be defined as abstract
data types with a well-defined interface (it is
instructive to define them using the Java
interface construct).

244

(b) Single linked list (Algorithm and
programming), binary trees, tree traversals
(Conceptual).

The following should be covered for each data
structure:

Linked List (single): insertion, deletion,
reversal, extracting an element or a sublist,
checking emptiness.

Binary trees: apart from the definition the
following concepts should be covered: root,
internal nodes, external nodes (leaves),
height (tree, node), depth (tree, node), level,
size, degree, siblings, sub tree, completeness,
balancing, traversals (pre, post and in-order).

14. Complexity and Big O notation

Concrete computational complexity; concept of
input size; estimating complexity in terms of
methods; importance of dominant term; constants,
best, average and worst case.

Big O notation for computational complexity;
analysis of complexity of example algorithms
using the big O notation (e.g. Various searching
and sorting algorithms, algorithm for solution of
linear equations etc.).

PAPER II: PRACTICAL – 30 MARKS

This paper of three hours’ duration will be evaluated
by the Visiting Examiner appointed locally and
approved by the Council.

The paper shall consist of three programming
problems from which a candidate has to attempt any
one. The practical consists of the two parts:

1. Planning Session

2. Examination Session

The total time to be spent on the Planning session and
the Examination session is three hours.
A maximum of 90 minutes is permitted for the
Planning session and 90 minutes for the Examination
session.

Candidates are to be permitted to proceed to the
Examination Session only after the 90 minutes of
the Planning Session are over.

Planning Session

The candidates will be required to prepare an
algorithm and a hand written Java program to solve
the problem.

Examination Session

The program handed in at the end of the Planning
session shall be returned to the candidates. The
candidates will be required to key-in and execute the
Java program on seen and unseen inputs individually
on the Computer and show execution to the Visiting
Examiner. A printout of the program listing including
output results should be attached to the answer script
containing the algorithm and handwritten program.
This should be returned to the examiner. The program
should be sufficiently documented so that the
algorithm, representation and development process is
clear from reading the program. Large differences
between the planned program and the printout will
result in loss of marks.

Teachers should maintain a record of all the
assignments done as part of the practical work through
the year and give it due credit at the time of
cumulative evaluation at the end of the year. Students
are expected to do a minimum of twenty-five
assignments for the year.

EVALUATION:

Marks (out of a total of 30) should be distributed as
given below:

Continuous Evaluation

Candidates will be required to submit a work file
containing the practical work related to programming
assignments done during the year.

Programming assignments done
throughout the year (Internal Evaluation)

10 marks

Programming assignments done
throughout the year (Visiting Examiner)

5 marks

245

Terminal Evaluation

Solution to programming problem on
the computer

15 Marks

Marks should be given for choice of algorithm and
implementation strategy, documentation, correct output
on known inputs mentioned in the question paper,
correct output for unknown inputs available only to the
examiner.

NOTE:
Algorithm should be expressed clearly using any
standard scheme such as a pseudo code.

EQUIPMENT

There should be enough computers to provide for a
teaching schedule where at least three-fourths of the
time available is used for programming.

Schools should have equipment/platforms such that all
the software required for practical work runs properly,
i.e. it should run at acceptable speeds.

Since hardware and software evolve and change very
rapidly, the schools may have to upgrade them as
required.

Following are the recommended specifications as of
now:

The Facilities:

• A lecture cum demonstration room with a
MULTIMEDIA PROJECTOR/ an LCD and
O.H.P. attached to the computer.

• A white board with white board markers should
be available.

• A fully equipped Computer Laboratory that
allows one computer per student.

• Internet connection for accessing the World
Wide Web and email facility.

• The computers should have a minimum of
1 GB RAM and a P IV or higher processor. The
basic requirement is that it should run the
operating system and Java programming system
(Java compiler, Java runtime environment, Java
development environment) at acceptable speeds.

• Good Quality printers.

Software:

• Any suitable Operating System can be used.
• JDK 6 or later.
• Documentation for the JDK version being used.
• A suitable text editor. A development

environment with a debugger is preferred
(e.g. BlueJ, Eclipse, NetBeans). BlueJ is
recommended for its ease of use and simplicity.

246

SAMPLE TABLE FOR PRACTICAL WORK

S. No.

Unique
Identification

Number (Unique
ID) of the candidate

Assessment of
Practical File

Assessment of the Practical Examination
(To be evaluated by the Visiting Examiner only)

TOTAL MARKS
(Total Marks are to

be added and
entered by the

Visiting Examiner)

30 Marks

Internal
Evaluation
10 Marks

Visiting
Examiner
5 Marks

Algorithm

Java Program with
internal

Documentation

Hard
Copy

(printout)

Output

3 Marks 7 Marks 2 Marks 3 Marks

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Name of the Visiting Examiner:_________________________________

 Signature: _______________________________

Date:___________________________________

	CLASS XI
	PAPER I –THEORY – 70 MARKS
	SECTION A
	Basic Computer Hardware and Software
	SECTION C
	PAPER II: PRACTICAL – 30 MARKS
	Continuous Evaluation
	Terminal Evaluation

	PAPER I –THEORY – 70 MARKS
	Part II (50 marks): This part will be divided into three Sections, A, B and C. Candidates will be required to answer two questions out of three from Section A (each carrying 10 marks) and two questions out of three from Section B (each carrying 10 ma...
	SECTION A

	SECTION B
	Continuous Evaluation
	Terminal Evaluation
	EQUIPMENT

	Unique Identification Number (Unique ID) of the candidate

